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This is the report on the basic research for AOARD entitled "Quantification of 
forecasting and change-point detection methods for predictive maintenance" 
 
1. Introduction 
 

It is desirable in many industries to reduce the burden of maintenance of aging 
infrastructure by transitioning to condition-based maintenance (CBM). In order to 
make this transition successful, forecasting and change detection methods that can be 
applied to complex mechanical systems are desired. 

The goal of this research is to establish a guidance for the development of change 
detection methods for predictive maintenance, and to develop actual methods for 
specific targets. 

 
The plan of this research is 

1) Develop advanced prediction methods for time series data using singular spectrum 
analysis. 

2) Develop change-point detection methods in the context of a complex system. 
3) Develop procedures for quantifying the performance of items 1 and 2, and provide 

experimental data for a comparison study. 
 
Several methods, in addition to SSA (Singular Spectrum Analysis), are investigated 

in order to compare their characteristics and capability. 
Chapter 2 to 7 are devoted to change detection methods and forecasting itself is 

examined in chapter 8. Conclusions of this research are summarized in chapter 9. 
Papers submitted to journals that are still under review at the time of writing this 

report and data that were not used in this report are given in the appendix. 
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2. Overview of change detection methods 
In order to clarify the common structure and differences between change detection 

methods, the principles of major methods are examined and their capability is 
evaluated with synthesized signals and experimental data 
 

Fig 2-1 shows a taxonomy of major modeling approaches. In this case, modeling 
means to describe a target mathematically. Change detection methods can be classified 
according to what kind of modeling approach is used. 

1st principles modeling is based only on design and physics of the targets, 
irrespective of the observed data. However, this approach is often not realistic, 
especially when the purpose of modeling is to detect a change in a complex system. 

In this study, our concern is empirical modeling in which the model of a target is 
derived from the observed data. Empirical modeling can be classified into two categories. 
The first is parametric modeling, where a certain form of equation is assumed for the 
model that is fitted to the observed data. The second is non-parametric for which we 
don't assume any form of equation for the model. 
 

 

Fig 2-1 Taxonomy of modeling approaches  
 
  

Methods	  for	  
Modeling

Empirical	  
Modeling

1st	  Principles	  
Modeling

Non-‐parametricParametric

SBM

Linear	  regression

ARIMA

KalmanFilter
Support	  vector	  machines

Kernel	  regression

Physics-‐based

Design-‐based

1st Principles	  – Specifies	  entire	  solution,	  
irrespective	  of	  data.

Parametric	  – Assumes	  form	  of	  solution,	   but	  
fits	  it	  to	  data.

Nonparametric	  – No	  assumption	  about	  
solution	  form,	  totally	  data-‐driven.

Principle	  Component	  AnalysisNonlinear	  regression

SSA

reference:	 Jim 	 Herzog,	 Sm artSignalC ore	 Technology	 O verview （2007）
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We investigated three change detection methods that are respectively based on 
ARIMA (Autoregressive Integrated Moving Average), SBM (Similarity Based Modeling), 
and SSA (Singular Spectrum Analysis). 

Methods were chosen so that both parametric and non-parametric approaches are 
investigated. ARIMA is parametric, SBM and SSA are non-parametric. SSA is similar 
to principal component analysis applied to time series. 

As these choices are not based on other specific reasons, it would be desirable to 
investigate other major methods in future researches. 
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3. Comparison of SSA and ARIMA methods 
A basic study of two change detection methods based respectively on SSA and 

ARIMA is performed. These two methods are applied to synthesized signals, and their 
performance is evaluated. First, the principles of both methods are described. 

 
3.1. Principle of SSA 

SSA (Singular Spectrum Analysis) is a non-parametric modeling method that 
applies principal component analysis to time series. Fig 3-1 shows the overview of SSA. 
First a history matrix is created from several parts of a time series, then principal 
component analysis is applied to this matrix.  

 
Fig 3-1 Overview of SSA 

 
Various analyses can be performed on the principal components, such as filtering, 

change detection and forecasting. The procedure of change detection is described in the 
next section  
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3.2. Algorithm of SST  

In this study the change detection method with SSA is defined as "SST (Singular 
Spectral Transform) ". 

Let    𝑥!: 𝑡 = 1,2,…  be a time series. 𝒙! = 𝑥! , 𝑥!!!,… , 𝑥!!! ! is a part of 𝑥! that is 
fixed and represents the normal state. 𝒙! = 𝑥! , 𝑥!!!… , 𝑥!!!

! is another part of 𝑥! that 
is compared to 𝒙!  to evaluate whether a change occurred or not. 𝐻!  and 𝐻!  are 
history matrices that are created from 𝒙! and 𝒙!: 

𝐻! =     

𝑥! 𝑥!!! … 𝑥!!!!!
𝑥!!! 𝑥!!! … 𝑥!!!!!!!
⋮ ⋮ ⋱ ⋮

𝑥!!!!! 𝑥!!! … 𝑥!!!!!

 

𝐻! =     

𝑥! 𝑥!!! … 𝑥!!!!!
𝑥!!! 𝑥!!! … 𝑥!!!!!!!
⋮ ⋮ ⋱ ⋮

𝑥!!!!! 𝑥!!! … 𝑥!!!!!

 

(3-1) 
 

 
where m and n are empirical parameters. 
The eigenvalue decomposition is applied to 𝐻! and 𝐻!: 
 

𝐻!𝐻!! = 𝑈𝛬!𝑈!  , 𝐻!𝐻!! = 𝑉Λ!𝑉! (3-2) 
 
where 𝑈 and 𝑉 are matrices which columns are the eigenvectors of 𝐻! and 𝐻!. 

These eigenvectors are arranged in descending order of the corresponding eigenvalues: 
 

𝑈 = {𝒖!,𝒖!,…𝒖!}  , 𝑉 = {𝒗!,𝒗!,… 𝒗!} (3-3) 
 
The degree of change of 𝒙! compared to 𝒙! is quantified by the score z, defined as: 
 

z ≡ 1 − 𝒖!! ∙ 𝒗! !
!

!!!

 (3-4) 

 
r is an empirical parameter that determines the number of largest principal 

components that are used for comparison. The score z is described as “SST Score”. 
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3.3. Principle of ARIMA 

ARIMA is a model for time series first introduced by Box & Jenkins (1976). It is a 
generalization of the ARMA model, itself a combination of AR and MA models. 

Let    𝑥!: 𝑡 = 1,2,…  be a time series. 
 

a) AR model 
The AR model represents the present value by a linear combination of the p past 

values. The pth order AR model is given by 
 

𝑥! = 𝛼!𝑥!!! +⋯+ 𝛼!𝑥!!! + 𝜀! (3-5) 
where 𝜀! is an error term. 
 

b) MA model 
The MA model represents the present value from the q past errors. The qth order MA 

model is given by 
 

𝑥! = 𝜀! − 𝜃!𝜀!!! − 𝜃!𝜀!!! −⋯− 𝜃!𝜀! (3-6) 
 

c) ARMA model 
The ARMA model is a combination of the AR model and the MA model. The equation 

(3-7) is called the ARMA model of degree (p, q). 
 

      𝑥! = 𝛼!𝑥!!! +⋯+ 𝛼!𝑥!!! 
   +  𝜀! − 𝜃!𝜀!!! − 𝜃!𝜀!!! −⋯− 𝜃!𝜀! 

(3-7) 

 
d) ARIMA model 

Since the ARMA model assumes stationary time series, it can not be applied to 
non-stationary time series. In order to achieve stationarity, the differences of the data 
points of a time series are calculated as follows. 

The first difference ∆𝑥! is expressed as 
 

∆𝑥! = 𝑥! − 𝑥!!! (3-8) 
 
The dth difference is expressed as 
 

∆!𝑥! = ∆!!!𝑥! − ∆!!!𝑥!!! (3-9) 
 
The ARMA model applied to the dth difference time series is called the ARIMA model 
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of degree (p,d,q): 
 
  ∆!𝑥! = 𝛼!∆!𝑥!!! +⋯+ 𝛼!∆!𝑥!!! 

                                      +  𝜀! − 𝜃!𝜀!!! − 𝜃!𝜀!!! −⋯− 𝜃!𝜀! 
(3-10) 

 
3.4. Algorithm of change detection with ARIMA 

In this study the change point detection technique that makes use of the ARIMA 
model is described as the “ARIMA-CF (Change Finder)”. The degree of a change is 
quantified by the “ARIMA Score”. 

The ARIMA Score was first described by Takeuchi and Yamanishi (2006). The 
procedure of ARIMA-CF is as follows. 
i) At time t, the ARIMA (p,d,q) model is created from the n points time series  X =

𝑥!!!, 𝑥!!!!!… , 𝑥!!! . p, d, and q are determined with the Akaike Information 
Criterion (AIC), and the coefficients of the ARIMA model are determined through the 
Least-Square method.  

ii) The residual 𝑟! = 𝑥! − 𝑥!    t − n ≤ i ≤ t   is the difference of the forecast by the ARIMA 
model and the actual measurement. The average and variance of the residuals 𝑟! of 
the time series X are computed. With the assumption that the residuals are normally 
distributed, the probability density distribution 𝑝!!! of the residuals of the time 
series X is obtained. 

iii) From the residual 𝑟!   at time t, the probability of occurrence of 𝑟!  ,  𝑝!!!(r!) is 
estimated. This probability is used to define the score 𝑠! as 
 

𝑠! ≡ −ln  (𝑝!!!(𝑟!)) (3-11) 
 
Although the score at time t is evaluated with (3-11), additional procedures are 

performed in order to reduce false detections. 
iv) The kth moving average 𝑦! is computed from the scores   𝑠! t − k + 1 ≤ i ≤ t : 

 

𝑦! =
𝑠!!!!!!

!!!

𝑘
 (3-12) 

 
v) The score 𝑠′! is calculated by following the procedures i) to iii) on the n last moving 

averages y!   t − n ≤ i ≤ t − 1 . The k'th moving average of 𝑠′! is the ARIMA Score 
as!: 
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as! =
𝑠 ′!!!!!! ′

!!!

𝑘′  (3-13) 

 
3.5. Evaluation Signals 

SST and ARIMA-CF are applied to 14 signals. All of the numerical results are shown 
in the appendix. Here we focuses on the most important 4 cases in terms of application 
to predictive maintenance. The nature of the signal in each case is shown in Table 3-1. 

 
Table 3-1 Signals for evaluation 

ID Type of signal Type of change Content of signal 
1 Periodic Frequency Sine wave 
2   Sine wave with noise 
3  Amplitude Sine wave 
4 Non Periodic Average Gaussian noise 
 

The periodic signals 1 to 3 are intended to represent change in vibration signals that 
are commonly used for the diagnosis of equipment. Periodic signals can be decomposed 
in two components, amplitude and frequency, that will each be affected depending on 
the abnormality. Nonetheless, depending on the type of abnormality, the change can be 
more easily detected with the amplitude or with the frequency. For this reason, 
evaluation in terms of detection of the change point is performed with SST and 
ARIMA-CF for these two components separately.  

The signal 4 (see Table 3-1) is intended to represent general signals that are non 
periodic such as trend data of vibration level, pressure, flow or other data obtained from 
online monitoring and acquired at a fixed interval. The main change to be detected in 
this kind of signals is a change in the mean value and the signal 4 was designed for such 
an evaluation. 

In addition, the signals 2 and 4, that contain gaussian noise, are used to evaluate 
the applicability of each method in the presence of noise.  
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3.6. Determination of the parameters of the methods 

3.6.1. Base Interval 

In this evaluation, the base interval, that is used for calculating the scores, is 
different for SST and ARIMA-CF. In the case of SST, the base interval is the first n 
points of the time series, and it is shown by a red frame in figures of numerical results. 

In the case of ARIMA-CF, the base interval is constituted of the n' points just before 
the point to be evaluated. While the base interval is changing for each evaluation point, 
the parameters p, q, and d of the ARIMA model are calculated only once for the first n' 
points of the time series and used henceforth. 

 
3.6.2. SST 

It is necessary to determine the parameters m and n, the size of the matrices 𝐻! 
and 𝐻!, appropriately. The parameter m represents the dimension of the eigenvectors 
and should be greater than the length of one cycle of the considered time series but not 
too large as sensitivity decreases with larger values of m. In this evaluation, m=100 and 
n=300. 

 
3.6.3. ARIMA-CF 

Because ARIMA-CF consists of two steps of modeling, two sets of parameters have 
to be determined. These parameters are the number of data points for each modeling (n1, 
n2); the degree of the models, and the size of the window for the calculation of each 
moving average (T1, T2) . 

In this evaluation, the number of data points at each step is the same as for SST 
(n1=n2=300). The size of the window for each moving average is respectively T1=5 and 
T2=3. The degree of the model for the first step (p1,q1,d1) is determined through the AIC 
(Akaike Information Criterion) using the first n points of the time series. The degree of 
the model for the second step is fixed to (1, 0, 0) for all cases. 
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3.7. Numerical Result 

3.7.1. Change in frequency 

The SST and ARIMA-CF scores for signal 1 are represented in Fig 3-3 and Fig 3-3 
respectively. For signal 1, the frequency of the sine wave is multiplied by 1.6 at sample 
1000 and then again by 1.5 at sample 2000. 
 

 
 

Fig 3-2 SST Score and signal 1   

 
Fig 3-3  ARIMA-CF Score and signal 1  (p1,d1,q1)=(1,1,0) 

 
While both methods detect the two change points, there is a significant difference 

between the SST and the ARIMA-CF scores. The SST score remains high after the first 
change point (see Fig 3-2) while the ARIMA-CF score is high only just after the change 
points (see Fig 3-3). The reason is that, at a given instant, SST performs the evaluation 
by comparison with the first n samples while ARIMA-CF performs the evaluation by 
comparison with the n previous samples. From these results, it can be seen that the SST 
can detect an abnormality even after the change point has occurred. The principle of the 
ARIMA-CF method means that continuous data are necessary. On the contrary, the 
SST method can be used even on data acquired intermittently.  
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3.7.2. Influence of noise 

The SST and ARIMA-CF scores for signal 2 are represented in Fig 3-4 and Fig 3-5 
respectively. For signal 2, the frequency of the sine wave, with Gaussian noise added, is 
multiplied by 1.75 both at samples 1000 and 2000.  

 

 
Fig 3-4  SST Score and signal 2  

 

 
Fig 3-5  ARIMA Score and signal 2    (p1,d1,q1)=(1,0,1) 

 
The SST score increases after the change points but does not remain high, as in the 

case of signal 1, and large fluctuations are observed due to the presence of noise. 
The change points are not detected with the ARIMA scores that always remains low.  
 

3.7.3. Change in amplitude 
The SST and ARIMA-CF scores for signal 3 are represented in Fig 3-6 and Fig 3-7 

respectively.  For signal 3, the amplitude of the sine wave is multiplied by 2 both at 
samples 1000 and 2000.  
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Fig 3-6  SST Score and signal 3 

 

 
Fig 3-7  ARIMA Score and signal 3  (p1,d1,q1)=(1,1,0) 

 
The value of the SST score increases just after the change points but does not 

remain high as it was the case for a change of frequency. Because the SST method 
includes a step of normalization of the amplitude, when only the amplitude is varying, it 
is evaluated as being in the same initial state. The reason for the slight increase just 
after the change points is that the change of amplitude modifies the shape of the sine 
wave and this change is detected by the method. Nonetheless, this change is detected 
only when the change point is in the part of the signal being evaluated. 

The ARIMA-CF score has the same behavior than in the case of a change of 
frequency, and increases only just after the change point. 

 
3.7.4. Change in trend 

The SST and ARIMA-CF scores for signal 4 are represented in Fig 3-8 and Fig 3-9 
respectively. For signal 4, the mean of the Gaussian noise increases steadily from 
sample 1000. 
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Fig 3-8  SST Score and signal 4  

 
Fig 3-9  ARIMA Score and signal 4   (p1,d1,q1)=(1,0,1) 

 
The value of the SST score increases after sample 1000 and remains high. The 

change in trend is detected because before sample 1000, the signal is only random noise 
and so are the principal components, but after sample 1000, the steady increase of the 
mean of the Gaussian noise becomes the principal component. As the SST method only 
retains the highest principal components, it performs a noise removal step, only 
evaluating the main, non-random properties of the noise.  

Similar to the case of a change of frequency of a sine wave with Gaussian noise 
added (see Fig 3-5), the ARIMA-CF score does not detect the change. Before applying 
the ARIMA-CF method, a noise removal step is required.  
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3.8. Summary of results 

The results of the evaluations are summarized in Table 3-2. The meaning of symbols 
in the table are as follows. 
◎ Change detection is possible even when a change point is not included in the 

range of evaluation. 
○ Change detection is possible when the change point is included in the range of 

evaluation. 
△ Change detection is possible but sensitivity is low. 
× Change detection is not possible. 
 

Table 3-2  Summary of evaluation results 
Type of time series Type of change Content of time series SST ARIMA-CF 

Periodic Frequency Sine wave ◎ ○ 

  Sine wave with noise △ ☓ 

 Amplitude Sine wave ○ ○ 

Non Periodic Average Gaussian noise ○ ☓ 

 
l SST is especially effective for detecting changes of frequency of periodic signals. 

When the frequency of a signal changes, SST can detect it even when the change 
point is not in the evaluated range of data. 

l ARIMA-CF has the characteristic of detecting a change point only just after the 
change point and thus can only be applied to continuous data.  

l Both methods have their change point detectability reduced by the presence of noise. 
Improved detectability is expected by applying a noise reduction processing before 
applying the methods. However, as the SST method already includes a noise 
reduction step, it is more robust in the presence of noise . 
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4. Acquisition of experimental data 
In order to evaluate the capability of each change detection method, experiments to 

acquire data of rotating machines under various conditions were performed. 
 

4.1. Classification of failures in rotating machines 

A turbo pump was used for these experiments because rotating machines like pumps 
are the main targets of condition monitoring in several fields. Failures of rotating 
machines can be classified mainly into two categories (see Fig 4-1): mechanical or 
structural. Examples of mechanical damages are flaking of bearings or wear of gears. 
Examples of structural abnormalities are misalignment of shafts or unbalance of rotors. 

It is known that mechanical damages are relatively easy to detect because the 
vibration level tends to rise significantly. On the other hand, structural abnormalities 
are difficult to detect because the vibration level does not tend to increase significantly. 

For this reason, a pump with a structural abnormality is assumed to be a good case 
for evaluating the capability of each change detection method. 

 
Fig 4-1  Classification of failures of rotating machines 

  

Mechanical	  damage Structural	  abnormality

Example Flaking	  of	  bearings
Wear of	  gears	  
etc.

Misalignment
Unbalance
etc.

Detection Relatively	  easy	  to	  detect	  by	  
monitoring	  the	  vibration level.

Difficult	  to	  detect because	  the	  
vibration	  level	  does not	  increase	  
clearly.

Bearing	  outer	  race	  
damage

Bearing	  ball	  
damage

Offset	  misalignment

Angular	  
misalignment
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4.2. Experimental setup 

4.2.1. Equipment 

The pump used in the experiments is shown in Fig 4-2. The technical specifications 
of the pump and operational conditions are given in Table 4-1. 

 

 
Fig 4-2  The pump used in the experiments 

 
Table 4-1  Pump specifications and operational conditions 

Pump Specifications  

  Type Horizontal volute pump 

  Power 1.5 kW 

  Rotation Speed � 3000 rpm 

  Total Head 23.2 m 

Operational Conditions  

  Pressure 0.1 MPa 

  Flow Rate 54 L/min 

  Temperature No control 

 
  



20 
 

4.2.2. Conditions of abnormality 

The list of experiments that were performed is given in Table 4-2. For each 
experiment, a different type of abnormality is introduced.  

 
Table 4-2  Type of abnormality for each experiment 

 
 

For each experiment, vibration data were acquired for several degrees of the 
abnormality in addition to the normal state. 

Based on preliminary experiments, the magnitude of abnormality is set so that the 
level of vibration velocity is in the range B or C of the ISO standard. 

The detailed conditions of each experiment are given in Fig 4-3 to Fig 4-6. 
 

 
Fig 4-3  Conditions of Misalignment 1 

  

Coupling	  Type Abnormality Way of	  introducing	  
abnormality Conditions

１ Misalignment	  1 Flexible	  Coupling Offset +	  Angular	  
misalignment

insert	  shims	  between	  
the	  motor	  and	  its

foundation

normal	  + 3	  degrees	  of	  	  
abnormality

２ Misalignment	  2 Rigid	  Coupling Offset
insert	  shims	  between	  
the	  motor	  and	  its

foundation

normal	  + 5	  degrees	  of	  	  
abnormality

３ Unbalance Rigid	  Coupling Unbalance of	  
impeller

put	  weights on	  the	  
impeller

normal	  + 2	  degrees	  of	  	  
abnormality

４ Looseness Rigid	  Coupling
Looseness	  between	  
the	  motor and	  its	  

foundation
loosen	  the	  bolts	   normal	  + 3	  degrees	  of	  	  

abnormality

ID Amount	  of	  misalignment

Normal less	  than	  0.02mm

mis 1 offset 0.8mm angular 0.3mm

mis 2 offset 1.4mm	  	  angular 0.5mm

mis 3 offset 2.0mm	  	  angular 0.7mm

motor

foundation

～～

motor

shim
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Fig 4-4  Conditions of Misalignment 2 

 

A shim is inserted between the motor and its foundation to introduce misalignment. 
The amount of misalignment is quantified by the thickness of the shim. 

 

 

Fig 4-5  Conditions of Unbalance 

 

Weights are put on the impeller to introduce unbalance. The amount of unbalance is 
quantified by the mass of the weights and their position. 

 

 

Fig 4-6  Conditions of Looseness 

 
  

ID Amount	  of	  misalignment

Normal less	  than	  0.02	  mm

mis1 offset 0.5mm

mis2 offset 1.0	  mm

mis3 offset 1.5	  mm

mis4 offset 2.5	  mm

mis5 offset 3.0mm

motor

foundation

shim

ID Amount	  of	  unbalance (g・mm)

Normal 0

unb 1 476.4

unb 2 770.9

weight

impeller

ID State

Normal Normal

loose	  1 small	  looseness	  of	  bolts	  A	  and	  B

loose	  2 medium	  looseness	  of	  bolts	  A	  and	  B

loose	  3 lerge looseness	  of	  bolts	  A	  and	  B

A B

C D



22 
 

4.2.3. Measurement conditions 

Measurements are performed simultaneously with two 3-axis vibration acceleration 
sensors (6 channels), that are located on the motor and pump bearings respectively (see 
Fig 4-7). Data are acquired at the sampling rate of 20kHz and each acquisition has a 
duration of 10 seconds. For each condition, data are acquired intermittently 10 times. 

 

 
Fig 4-7  Position and direction of sensors 

 
Table 4-3  Sampling Conditions 

Sampling Rate 20 kHz 

Sampling Duration 10 sec 

Number of sampling 10 times for each condition  

 
  

X
２

３

1X
５

６

４

CH Position Direction

1 Motor bearing Horizontal

2 Axial

3 Vertical

4 Pumpbearing Horizontal

5 Axial

6 Vertical Accelerometer
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4.3. Experimental results 

4.3.1. Vibration velocity level 

The vibration velocity is used because the level of vibration velocity is the most 
commonly used indicator for abnormalities in rotating machines. The vibration velocity 
is calculated by integrating the acceleration signals obtained by the sensors. 

Fig 4-8 shows the averaged RMS values of the vibration velocity for each 
experiment. 

For Misalignment 1 and Looseness, vibration velocity level tends to rise according to 
the magnitude of the abnormality. On the other hand, for Misalignment 2 and 
Unbalance there is no such tendency. In these cases, it is difficult to detect the 
abnormality by using the vibration levels. 
 

 
Fig 4-8  Vibration velocity level  
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4.3.2. Frequency Spectrum 

Fig 4-9 shows the frequency spectrums of the acceleration signals from the sensor 
located at the motor bearing in the case of Misalignment 1. Each of these spectrums is 
the average of the spectrums obtained from 10 measurements. 

The magnitude of the rotation frequency component and of its harmonics tend to rise 
according to the degree of misalignment. Although this is the case of Misalignment 1, in 
the case of the other experiments, the main components that change according to the 
abnormality are the rotation frequency component and its harmonics too. The frequency 
spectrums of all experiments are given in the appendix. 

 

 
Fig 4-9  Frequency spectrum (Misalignment 1, motor bearing)  

  

Normal

mis1

mis2

mis3

Motor	  Horizontal Motor	  Axial Motor	  Vertical

acceleration	  	  (m
/s2)

Power	  source	  noise

rotation	  
frequency	  and	  
its	  harmonics

47.7

47.7

47.6

47.6

Frequency	  (Hz)

Misalignment	  1
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5. Application of SST method to experimental data 
5.1. Development of the method 

In this section we develop the SST method to detect structural abnormality of 
rotating machines using data of "Misalignment 2" 
 
5.1.1. Investigation of SST parameters 

In order to perform the calculations involved in the SST, it is necessary to set the 
parameters m and n in equation (3-1) as well as the parameter r in equation (3-4). 

m is the dimension of the principal components vectors and n is the number of data 
points used for computing the principal components. Because SST is a method that 
detects changes of state in the time series from the change of the principal components, 
it is necessary to choose a sufficiently large dimension for the principal components so 
that the characteristics of the time series are captured appropriately. If the dimension 
of the principal components vector m is relatively small, the high frequency components 
will dominate. If m is relatively large, the low frequency components will appear. 
Therefore the frequency domain should be determined from the characteristics of the 
acquired signals in order to choose an appropriate value of m. 

For this determination, a simple spectral analysis is first performed. Examples of 
the spectrum of vibration signals acquired for some of the experiments are shown in Fig 
5-1 Each of these spectrums is the average of the spectrums obtained from 10 
measurements. 
 

 
Fig 5-1  Frequency spectrum (Misalignment 2, horizontal direction of the motor bearing.).  

  

Frequency(Hz) Frequency(Hz)

Frequency(Hz) Frequency(Hz)

Ac
ce
le
ra
tio

n(
m
/s

2 )
Ac
ce
le
ra
tio

n(
m
/s

2 )

Ac
ce
le
ra
tio

n(
m
/s

2 )
Ac
ce
le
ra
tio

n(
m
/s

2 )

Normal
0-‐10000	  Hz

Normal
0-‐300	  Hz

mis 5
0	  -‐10000	  Hz

mis 5
0-‐300	  Hz

Misalignment	  2



26 
 

Fig 5-1 shows that the main spectral components are under 1kHz. Moreover, the 
lowest main spectral component is 50Hz, which is the rotation frequency of the axis. As 
the same remarks can be done for the cases not shown in Fig 5-1 (other directions and 
location), the frequency domain can be set to 50～1000Hz.  

Since the frequency domain is limited to up to 1kHz and the sampling rate is 20kHz, 
the data can be downsampled to avoid that the size of the matrix during the 
computation of the SST becomes unnecessary large. The number of samples is divided 
by 10 so that the Nyquist frequency becomes equal to 1kHz. The value of m should be 
chosen so that the information down to 50Hz is included. The lower value of 33.3Hz is 
chosen to ensure that no information is lost. The sampling rate after downsampling is 
2kHz and the frequency of 33.3Hz corresponds to a duration of 0.03 seconds, which 
implies that the value of m is 60 samples (2000x0.03=60). 

n is the data length to be used once for the calculation of the principal components 
and n-m+1 corresponds to the number of samples used by the principal component 
analysis. A balance must be found as more general principal components are obtained 
with a larger number of samples, but the computational cost of the matrices is increased. 
In order to verify the influence of the value of n on the results, several values of n are 
used: 2, 3, and 4 times the value of m.  

r in equation (3-4) determines the number of principal components that are used 
when computing the degree of change compared to the reference state. The magnitude 
of the eigenvalues obtained by equation (3-2) represents the amount of information of 
the corresponding principal components. It is thus suitable to set a threshold on the 
magnitude of the eignevalues to determine the number of principal components to be 
used for the score calculation. 

The ratio p! of the sum of a number of the largest eigenvalues over the sum of all 
the eigenvalues is defined as 

p! =   
λ!!

!!!

λ!!
!!!

                      (i = 1,2,3. . .m) (5-1) 

with λ! the eigenvalue corresponding to the k-th principal component obtained 
from equation (3-2). r is determined as the smallest value of i such as p!  is larger than 
the threshold p. In this section, p is set to be 0.2, 0.4, or 0.6 to evaluate its influence. 

 
5.1.2. SST score computation 

As described in 3.3, SST is a method for calculating the degree of change of the 
principal components between the base interval and the target interval. Considering 
that even in stable conditions, acquired signals show significant variation, it is not 



27 
 

sufficient to use a single interval in the normal state as the base interval. Therefore, the 
SST Score of a target interval is computed from the average of the scores calculated for 
several base intervals in normal state. Moreover, the same computation is performed for 
all six channels, that are measured simultaneously, and the average of these scores is 
the final SST Score of a given target interval. The base intervals are extracted from all 
acquisitions in normal state at a certain interval(10 x n). A diagram of the calculation 
process is shown in Fig 5-2. The notations used in this figure are defined as follows. 

 
Ti: i-th target interval (i=1,2,3...NT) 
Bj: j-th base interval (j=1,2,3....NB) 
S!"
! : SST score computed from Ti and Bj for channel c (c=1,2,…,6) 
Z!
!: SST score for channel c for the i-th target interval 
Z!: average SST score for i-th target interval (average of scores Z!! to Z!!) 

 
Fig 5-2  Computation of the SST score  
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5.1.3. Experimental results 

The results of the calculation of the SST Score with several values of parameters n 
and p are shown in Fig 5-3. The data points in the graphs represent the average value of 
SST score, for each condition and for all NT evaluations, and the error bars represent 
the standard deviation (±σ). 
 

 n = 2×m n = 3×m n = 4×m 

p = 0.6 

   

p = 0.4 

 
  

p = 0.2 

   
Fig 5-3  Comparison of the results depending on the parameters (Misalignment 2) 

 
As can be seen from Fig 5-3 the score is higher when misalignment is present than 

when conditions are normal, regardless of the value of the parameters or the amount of 
offset. When considering the standard deviation in normal operation, it is clear that 
detection of abnormalities is possible. Moreover, the results are not affected 
significantly by the value of n that can be set as twice the value of m. 

On the contrary the value of p has a significant influence on the result, and the score 
is lower for larger values of p as equation (3-4) shows. However, the most important 
aspect is not the height of the score, but whether the score changes significantly in the 
abnormal state compared to its value and variation in normal state. In this case, it is 
possible to detect an abnormality for all three values of p. 

While the score tends to saturate for an amount of offset larger than 1.0 mm, it can 
be seen that the score has a tendency to increase with the offset in the range 0～1.0 mm. 
This score is an effective sensitive indicator for the very small levels of misalignment. 
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5.2. Evaluation of the method 

The SST method described in the previous section is applied to all of the 
experimental data. Fig 5-4 shows the comparison of RMS of vibration velocity and SST 
score.  

In the case of RMS, average RMS of 6 channels (Ri) is calculated for each target 
interval Ti, and the average of Ri for each condition is shown in the graph. The red 
dashed lines represent the threshold that is equal to three standard deviations added to 
the mean value in the normal state. 

The base intervals for SST calculation are taken from the normal state data of each 
experiment. For example, the scores for each condition of Misalignment 1 are calculated 
by comparing to the data in the normal state of Misalignment 1.  

 

 
Fig 5-4  Comparison of RMS of vibration velocity and SST Score  

 
As it can be seen in Fig 5-4, RMS of vibration velocity can detect abnormality only in 

the case of Misalignment1 and Unbalance. On the other hand, SST score can clearly 
detect the abnormality in all experiments. This results validate the capability of the 
method for detecting structural abnormalities. 
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In the previous evaluation, the base data for the calculation of SST score are the 
normal state data of each experiment. The characteristics of the vibration signal of the 
normal state of each experiment is not the same mainly because the pump is 
reassembled between each experiment. This kind of variance in normal state is also 
found in real machines, and all the signals acquired in normal state need to be 
evaluated as normal. 

For this reason, SST score is calculated by comparing the target data with the 
normal data of all experiments. Fig 5-5 illustrates this calculation process. The notation 
is the same as for Fig 5-2. 

 
Fig 5-5  Computation of the SST score 2 
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Fig 5-6 shows the results of SST score calculated by the above procedure. The 
threshold is three standard deviations added to the mean of the calculated scores from 
all normal state data. The SST scores are high even in the normal states and the 
threshold is also high because of the large variance between the normal states. For this 
reason, it is not possible to distinguish an abnormal state from a normal state in all 
experiments. 
 

 
Fig 5-6  SST Score calculated with normal data of all experiments 

 
This result implies that the SST method is not applicable to data that have large 

variance in normal state. This limitation is caused by the way of evaluating the final 
SST score that is the average of the SST scores between a target data and multiple 
normal state data  

In order to find a solution to this situation, the SBM is investigated in the following 
section. 
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6. Investigation of the SBM (Similarity Based Modeling) 
6.1. Principle of SBM 

SBM is a nonparametric empirical modeling method that searches for patterns 
obtained from past data and generates estimates of the current values of the data. 

 

Fig 6-1 Construction of feature vectors 
 

Let the feature vector 𝒙 t!   be  the set of m physical quantities at time ti. The feature 
vector 𝒙 t!    represents the state of a target at ti. Typically, a feature vector is 
constituted of coincident data readings from sensors. 

A model matrix M is built from n feature vectors at different time t1, t2, ,... ,tn. 
M = [𝒙 t!   𝒙 t!   𝒙 t!   … 𝒙 t! ] (6-1) 

 
Let y be the feature vector that is made from the current observed data. SBM 

evaluates the difference between the current feature vector y and the estimated vector  𝐲, 
which is derived from M and y. 

𝐲 is defined as  
𝒚 ≡ M ∙𝒘 (6-2) 

where  
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In the above equation, A,B  is a matrix and its elements are a measure of the 
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is the j-th column vector of matrix B. In the same way, A,𝒃  is a vector and its elements 
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The similarity of two vectors 𝒂,𝒃  is defined as  

𝒂,𝒃 ≡   
1

1 + 𝒂 − 𝒃
 (6-5) 

 
The residual r is the difference between y and 𝒚 and is defined as 

𝑟 ≡ 𝒚 − 𝒚  (6-6) 

 
As it can be seen from equation (6-2), 𝒚 is expressed as a linear combination of the 

model vectors  𝒙 t! , 𝒙 t! …… 𝒙 t! . For this reason, 𝒚 is estimated in the range of 
interpolation of the model vectors. In addition, each coefficient is normalized so that the 
total of all coefficients is 1 (see (6-3))  
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6.2. Basic study of SBM 

In order to examine the characteristics of SBM, a basic study was performed with 
synthesized signals. Two important results are shown in this section, with the other 
results shown in the appendix. 

 

 
Fig 6-2  Application of SBM to synthesized signals 1 

 
Fig 6-2 shows the result of the application of SBM to two signals with the feature 

vector  𝒙 constituted of coincident data readings of both signals. The model matrix M is 
built from two feature vectors 𝒙 t!     and 𝒙 t! , as shown in the top-left figure. 

The estimated signals 𝒚(t) of target signals 𝒚(t) are calculated using the model M. 
As it can be seen in the bottom-left figure, estimation is correct for the first half of the 
signals, but not for the second half. This implies that the estimation capability of SBM 
is limited to the range of interpolation of the model vectors. The bottom-right figure 
shows that the farther away from the range of interpolation target signals are, the 
larger the residual is. 
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Fig 6-3 shows another result of the application of SBM, with the model vectors 
𝒙 t! , 𝒙 t!  chosen so that the range of fluctuation of the signals is inside the range of 
interpolation of the model vectors. One of the target signals has an abnormality so that 
the relation between the two signals is different than the one in the model interval. 

 

 
Fig 6-3  Application of SBM to synthesized signals 2 

 
As it can be seen in the bottom figures, estimation is incorrect and the residual is 

high only for the duration of the abnormality. This kind of abnormality can not be 
detected by just monitoring the level of each signal because the values of the 
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6.3. Application of SBM to experimental data 

6.3.1. Definition of the feature vector 

As stated previously, the feature vector in SBM is typically constituted of coincident 
data readings from the sensors. However, the feature vector can be anything as long as 
it characterizes the state of a target. The higher density of information it has, the better. 
It means that the feature vector should not have elements that do not change according 
to the state, otherwise the S/N ratio would decrease. 

In this section, we apply SBM to the same experimental data used in the 
investigation of SST. In order to detect structural abnormalities in rotating machines 
from vibration acceleration signals, the feature vector defined in Fig 6-4 is used. 
 

 
Fig 6-4 Definition of the feature vector 

 
For each channel, the vector 𝒙!"_! is constituted of the magnitude of the components 

of the frequency spectrum at the rotation frequency and its 2nd to 10th harmonics. 
Then the feature vector 𝒙 is defined as the combination of all the vectors 𝒙!"_!. 

This feature vector contains the principal frequency pattern relative to the state of 
the target equipment. This definition is based on the fact that the magnitude of the 
rotation frequency component and of its harmonics change when a structural 
abnormality is present, as shown in section 4.3.2.  
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6.3.2. Evaluation results 

Fig 6-5 illustrates how the model of the normal state is created. Each square 
corresponds to a single measurement, and 10 measurements are performed for each 
condition. As stated in section 5.2, the signals acquired in the normal state exhibit a 
large variance between experiments due to the reassembling of the pump. In order to 
have a single model that represents the normal state, half of the acquisitions in the 
normal state of each experiment are used to build a single model of the normal state.  

 
Fig 6-5 The model of the normal state 

 
The change score, that is the average residual for each condition, is given in Fig 6-6. 

The threshold is three standard deviations added to the mean of the residuals in the 
normal state.  

 
Fig 6-6 Change score evaluated by SBM 
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SBM clearly distinguishes all of the abnormal states from the normal states in spite 
of the large variance between normal states. As shown in section 5.2, it was not possible 
to detect abnormalities with SST because of the large variance of the normal states. On 
the other hand, the score obtained from SBM is low even if only one model vector is 
similar to the target vector. This feature makes SBM applicable to data that have a 
large variance between the normal states. 
 
6.3.3. Characterization of abnormalities 

A frequency spectrum tends to be in a specific state depending on the type of 
abnormality. Therefore, by evaluating the similarity using models that are specific to 
each type of abnormality, it is assumed that the characterization of an abnormality can 
be achieved. 

The model of each abnormal state is built with half of the data of the corresponding 
state (see Fig 6-7). The other data are used as targets of evaluation. 
 

 

Fig 6-7 Models of abnormal states 
 

The results are shown in Fig 6-8. The vertical axis represents the similarity, that is 
the inverse of the residual, and the horizontal axis represents the type of abnormality 
used for the model. Results show the use of each specific model on all the types of 
abnormalities. 
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(a) Target data: Misalignment 1 

 

 

(b) Target data: Misalignment 2 
 

 
(c) Target data: Unbalance 
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(d) Target data: Looseness 

Fig 6-8 Similarity to each model 
 
As it can be seen in Fig 6-8, similarity is the highest when the type of abnormality 

present in the target data and used for the reference model are the same.  
These results show that SBM has the capability of characterizing the type of 

abnormality if a model exists for each type of abnormality. 
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7. Discussion of change detection methods 
Through the study of three change detection methods, their characteristics were 

clarified. Moreover a common structure was extracted.  
Change detection can be achieved by comparing current value to a reference value. 

The value can be any form of data such as a scalar or a vector, as long as it represents 
the state of a target. The reference value can be decided by a standard, or derived from 
previous observations. 

 
A change detection method consists of two essential components: 
1) Extraction of features 
2) Evaluation of the features 
 
As for 1), the extracted feature values must represent the state of a target. It is 

desirable that a feature changes according to the state of the target, and is stable when 
the state can be regarded as the same. That is, a high S/N ratio is desirable. 

As for 2), evaluation methods should be appropriate to the form of the data and how 
abnormalities appear in them. Multiple techniques can be used such as statistical 
methods or pattern matching methods. 
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Fig 7-1 shows the summary of three methods from the perspective of this structure. 
 

 
Fig 7-1  Summary of each method 

 
• ARIMA-CF 

The features are an ARIMA model derived from a given part of a time series. The 
score is calculated from the probability of occurrence of the current value, assuming the 
ARIMA model that is derived from a preceding period of time. 

The characteristics of ARIMA-CF described previously, such as that it can only be 
applied to continuous data or that the score increases only near change points, are due 
to the method of evaluation, not the way features are extracted. 

If the method is modified to use an ARIMA model derived from a fixed period of time 
as reference, it can theoretically be applied to data that are acquired intermittently. An 
essential part of the ARIMA method is to extract features as an ARIMA model. There is 
flexibility in the way of evaluating the change of feature values. 
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• SST 
The features are the principal components derived from a given part of a time series 

by SSA. The scores are calculated through the inner product of principal components of 
two states. 

The essential part of this method is to extract features as principal components of 
time series. Similarly to ARIMA-CF, there is flexibility in the way of evaluating the 
change of feature values.  

 
• SBM 

Contrary to the previous two methods, the way of extracting features has more 
flexibility. Typically a vector constituted of coincident data readings from sensors is 
used as the feature vector. But any vector can be used as long as it characterizes the 
state of an equipment.  

The essential point is the method of evaluation. The current vector is estimated in 
the range of interpolation of the model vectors, and this process works as a pattern 
matching. 

 
Viewing change detection methods from the perspective of this structure clarifies 

their procedure, and shows their advantages and drawbacks. This knowledge is the 
foundation to develop a new method. For example SBM has no rule for extraction of 
features, so principal components extracted by SSA can be used as feature vectors, then 
evaluated by SBM (see Fig 7-2). 

 
Fig 7-2  Combination of methods 
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8. SSA forecasting 
8.1. SSA forecasting algorithm 

The procedure is based on the method described in "Analysis of Time Series 
Structure: SSA and related techniques (2001)" by Nina Golyandina, Vlandimir 
Nekrutkin, and Anatoly Zhigljavsky. 

 
Let    𝑥!: 𝑡 = 1,2,…  be a time series. 𝐻 is a history matrix created from 𝑥!. 

𝐻 =     

𝑥! 𝑥! … 𝑥!!!!!
𝑥! 𝑥! … 𝑥!!!!!
⋮ ⋮ ⋱ ⋮
𝑥! 𝑥!!! … 𝑥!

= 𝑯!  𝑯!   ⋯𝑯!!!!!   

Let 𝑷1    ,𝑷2,⋯𝑷𝑚 be the principal components of H. 
𝐻 is defined as the projection of 𝐻 onto the space spanned by 𝑷1, 𝑷2...  𝑷𝑟   (𝑟 < 𝑚) 

𝐻 ≡    𝑯!  𝑯!   ⋯𝑯!!!!! = 𝑷!𝑷!!𝐻
!

!!!

                       (8-1) 

𝐻   ≡ 𝑯1  𝑯2   ⋯𝑯𝑛−𝑚+1  is the result of the Hankelization of the matrix 𝐻. 𝐻 can be 

regarded as the history matrix of some time series 𝑥!.  

 
𝑯𝑖 = (𝑥𝑖  𝑥𝑖+1   ⋯ 𝑥𝑖+𝑚−1)

!                (𝑖 = 1,2… , 𝑛 −𝑚 + 1) 
 
Then 𝑥!!!!! can be expressed as a linear combination of the previous m-1 values. 

 

𝑥𝑖+𝑚−1 = 𝑎1𝑥𝑖+𝑚−2 + 𝑎2𝑥𝑖+𝑚−3 +   ⋯+ 𝑎𝑚−1𝑥𝑖                    (𝑖 = 1,2… , 𝑛 −𝑚 + 1) (8-2) 
 

The coefficients are determined by  
 

𝑎!!!
⋮
𝑎!

=
1

1 − 𝜈!
𝜋!𝑷!

∇
!

!!!

 

 
where 𝜋! is the last component of 𝑷𝑖  , 𝑷!∇ is the vector consisting of the first m-1 

components of 𝑷𝑖  , and 𝜈! = 𝜋!! +   ⋯+ 𝜋!! 
 
Forecasting is achieved by equation (8-2).  
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8.2. Numerical results of SSA forecasting 

Evaluation of the SSA forecasting method is performed with 4 synthesized signals. 
The nature of each signal is listed in Table 8-1. 

 
Table 8-1 Signals for evaluation 

No.1 Straight line 

No.2 Exponential curve + Gaussian noise 

No.3 Cyclic curve + Gaussian noise 

No.4 Exponential curve + Cyclic curve + Gaussian noise 

 
8.2.1. Signal 1 

 
Fig 8-1 Signal No.1, SSA forecasting 

 
The bottom-left figure shows some of the principal components of the original signal 

and the red rectangle indicates the ones that are used for the process of projection, 
according to equation (8-1). They are chosen from the value of their corresponding 
eigenvalue, shown in the top-right figure.  

 
  

SSA

Original	  Signal Eigenvalues (parameter	  :	  m=20)

Blue：Original
Green：SSA

Principal	  Components Used	  for	  projection
Forecast

1 2 3

4 5 6

7 8 9
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8.2.2. Signal 2 

 
Fig 8-2 Signal No.2, SSA forecasting 

 
8.2.3. Signal 3 

 
Fig 8-3 Signal No.3, SSA forecasting 
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Green：SSA
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Original	  Signal Eigenvalues (parameter	  :	  m=20)

Blue：Original
Green：SSA

Principal	  Components Used	  for	  projection SSA Forecast

1 2 3

4 5 6

7 8 9
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8.2.4. Signal 4 

 
Fig 8-4 Signal No.4, SSA forecasting 

 
As it can be seen in Fig 8-1 to Fig 8-4, SSA shows good capability at forecasting 

several kinds of signals. 
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8.3. Comparison with other methods 

Six forecasting methods including ARIMA and SSA are applied to the 4 signals used 
in the previous section. The principle of each method is listed in Table 8-2. 

 
Table 8-2 Forecasting methods for comparison 

Simple moving average 
𝑥!!! =

𝑥! +   𝑥!!! +⋯   +  𝑥!!!!!
n

 

Exponential smoothing 𝑥!!! = α𝑥! +    1 − α 𝑥! 

Holt's linear method L! = α𝑥! + 1 − α L!!! + T!!!  

T! = β L! − L!!! + (1 − β)T!!! 

𝑥!!! = L! + T! 

Linear regression Fit to a straight line by least squares method 

ARIMA see section 3.3 

SSA see section 8.1 
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8.3.1. Signal 1 

 

Fig 8-5 Signal No.1, Comparison of forecasting methods 
 
  

Simple	  Moving	  Average	  	  n	  =	  5 Exponential	  Smoothing	  	  α=0.9

SSA	  	  m=20ARIMA	  （p,d,q)	  =	  (1,1,0)

Holt's	  Linear	  Method	  	  α=0.1,	  β=0.2 Linear	  Regression

Blue	  :	  Original	  
Green	  :	  Forecast
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8.3.2. Signal 2 

 

 
Fig 8-6 Signal No.2, Comparison of forecasting methods 

 
  

Simple	  Moving	  Average	  	  n	  =	  5 Exponential	  Smoothing	  	  α=0.9

SSA	  	  m=20ARIMA	  （p,d,q)	  =	  (1,1,0)

Holt's	  Linear	  Method	  	  α=0.1,	  β=0.2 Linear	  Regression
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8.3.3. Signal 3 

 

Fig 8-7 Signal No.3, Comparison of forecasting methods 
 
 
  

Simple	  Moving	  Average	  	  n	  =	  5 Exponential	  Smoothing	  	  α=0.9

SSA	  	  m=20ARIMA	  （p,d,q)=(2,0,0)

Holt's	  Linear	  Method	  	  α=0.1,	  β=0.2 Linear	  Regression
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8.3.4. Signal 4 

 
Fig 8-8 Signal No.4, Comparison of forecasting methods 

 
 
  

Simple	  Moving	  Average	  	  n	  =	  5 Exponential	  Smoothing	  	  α=0.9

SSA	  	  m=20ARIMA（p,d,q)=(3,1,0)

Holt's	  Linear	  Method	  	  α=0.1,	  β=0.2 Linear	  Regression
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8.4. Summary of SSA forecasting 

Numerical results shows that SSA has good capability at forecasting comparing to 
other methods. The main reason is that the procedure of SSA forecasting includes a step 
of noise reduction.  

For the SSA method, a history matrix of the original signal is projected into a space 
spanned by the most significant principal components, and forecasting is performed on 
the time series corresponding to the projected history matrix. This procedure enables to 
find the dominant structure in a signal without begin obstructed by noise. 

 
In the field of predictive maintenance, target signals can be classified into two 

categories: 
1) Trend data that are plotted per minute, hour, day, week etc... 
2) High sampling rate signals (for example, raw vibration signal). 
 
Although forecasting methods can be applied to trend data in order to estimate the 

remaining life time of an equipment, the performance of a given forecasting method 
might not have a significant impact on the result. Because for any forecasting method to 
succeed, the target signal must contain some information that indicates a future 
degradation. Usually this information is a simple rising trend and because sudden 
failures cannot be forecasted by any methods, a simple extrapolation method is 
sufficient in many cases. 

In order to improve the method for estimating the remaining life time, it is 
considered to be more efficient to use statistical data of the same kind of equipment or 
the knowledge based on a physical model, than to improve the accuracy of the 
forecasting of the observed trend data. 

 
A common point in forecasting and change detection methods is to extract a 

structure from the signals that represents the state of the target. This extraction is key 
to achieve early detection of abnormalities and to improve predictive maintenance.  
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9. Conclusion 
We have investigated 3 major change detection methods whose modeling 

approach is respectively SSA (Singular Spectrum Analysis), ARIMA (Autoregressive 
Integrated Moving Average) and SBM (Similarity Based Modeling). 

Their basic features were examined using various synthesized signals, and these 
methods were customized so that they can be applied to detect change in rotating 
machines with structural abnormalities. 

Developed methods showed a good capability of detecting structural abnormality 
of a pump that are not detected by vibration level. The customized SBM method showed 
especially good capability, which can be applied to data that has large variance in 
normal states. Moreover the method showed capability of specification of abnormality. 

 
In addition to the development of methods for specific targets, a common structure 

in change detection methods was derived. The structure consists in a two steps process: 
1) Extraction of features, 2) Evaluation of these features. Fig 7-1 shows the summary of 
each method from the perspective of this structure. 

Viewing change detection methods from the perspective of this structure clarifies 
their procedure, and shows their advantages and drawbacks. This knowledge is the 
foundation of the guidance to develop practical applications for predictive maintenance. 
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1. Numerical results of SST and ARIMA-CF 
Numerical results of application of SST and ARIMA-CF to 13 synthesized signals 

are shown in this section. The nature of signals are shown in the table below. The 
methodology and the meaning of parameters are described in section 3. 

 
Type of time series Content of time series Type of change ID 

Periodic  Sine wave Frequency increases 1 
Frequency decreases 2 
Amplitude increases 3 
Amplitude decreases 4 

Composition of two sine waves  Frequency increases 5 
Frequency decreases 6 
Amplitude increases 7 
Amplitude decreases 8 

Sine wave with noise Frequency increases 9 
Square wave  Frequency increases 10 

Frequency decreases 11 
Non-periodic  Gaussian noise Average increases 12 

Variance increases  13 

 
(1) Frequency increases 

 

Parameters: m=100, n=300 

 

 

Parameters: n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,1,0) 
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(2) Frequency decreases 

 
Parameters: m=100, n=300 

 
Parameters:n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,1,0) 

 
(3) Amplitude increases 

 

Parameters: m=100, n=300 

 
Parameters: n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,1,0) 
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(4) Amplitude decreases 

 

Parameters: m=100, n=300 

 
Parameters: n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,1,0) 

 
(5) Two sine waves, frequency increases 

 
Parameters: m=100, n=300 

 

Parameters: n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,0,1) 
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(6) Two sine waves, frequency decreases 

 
Parameters: m=100, n=300 

 
Parameters: n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,0,1) 

 
(7) Two Sine Waves, amplitude increases 

 
Parameters: m=100, n=300 

 

Parameters: n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,0,1) 
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(8) Two Sine Waves, amplitude decreases 

 
Parameters: m=100, n=300 

 

Parameters: n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,0,1) 
 

(9) Noisy sine wave, frequency increases 
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(10) Square wave, frequency increases 

 
Parameters: m=100, n=300 

 

Parameters: n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,0,0) 
 
(11) Square wave, frequency decreases 
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(12) Gaussian noise with mean increases 

 
Parameters: m=100, n=300 

 
Parameters: n1=n2=300, T1=5, T2=3, (p1,d1,q1)=(1,0,0) 

 
(13) Gaussian noise with variance increase 

 
Parameters: m=100, n=300 
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2. Frequency spectrum of experimental data 
Frequency spectrums of acceleration signals for each condition of the experiment are 

shown in this section. Each of these spectrums is the average of the spectrums obtained 
from 10 measurements. Each column of figures corresponds to the position and 
direction of the sensor and each row corresponds to the condition. 
 

 

Misalignment 1 : Frequency spectrum at motor bearing 
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mis 3
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Misalignment 1 : Frequency spectrum at pump bearing 

 
 
  

Normal

mis 1

mis 2

mis 3

Pump	  Horizontal Pump	  Axial Pump	  Vertical

Acceleration(m
/s2)

Frequency	  (Hz)
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Misalignment 2 : Frequency spectrum at motor bearing 
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Misalignment 2 : Frequency spectrum at pump bearing 
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Unbalance : Frequency spectrum at motor bearing

 

Unbalance : Frequency spectrum at motor bearing 
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Looseness : Frequency spectrum at motor bearing 

 

 
Looseness : Frequency spectrum at motor bearing 
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3. Numerical results of SBM 
Numerical results of application of SBM to synthesized signals are given in this 

section. A target system consists of two signals and a feature vector is defined as a set of 
coincident values of them. At building of a model, each signal is normalized so that its 
average = 0 and  standard deviation = 1, and a target vector is also normalized by the 
same coefficients as one used for the model. 

The main purpose of this basic study is to clarify the characteristics of SBM and 
evaluate the effect of the way of sampling for a model. Acquired knowledge is 
summarized briefly in section 6.2. 
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)t(y
SBM,es=ma=on, )t(ˆ)t()t(r yy −=Residual,

Average,of,Residual,,=,0.067,



22 
 

a -  

 
 

 
 

  

re
sid

ua
l�

Black,:,Original,Signals,
Red,:,Samples,for,Modeling�

Model,
Target,Signals�

Target,
)t(y

Black,:,Target,Signals,
Green,,Blue,:,Es=mated,signals� )t(ŷ
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ABSTRACT 

In order to evaluate the advantages and disadvantages of change detection techniques using Singular Spectral 

Transform (SST) and Autoregressive Integrated Moving Average (ARIMA) applied to equipment diagnosis, 

these two techniques are applied to signal data sets, and their performance is evaluated. Synthesized signals, 

periodic and non-periodic, are used to evaluate the capability of detection of both methods for several types of 

changes.  

As a result of these studies, it was shown that the SST method is suitable for detecting change in periodicity, and 

that it can even be applied to data acquired intermittently. On the other hand, the ARIMA method was effective 

in detecting change points in continuous data. 
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1.  Introduction  
 

Condition monitoring is desired in many industries to manage the service life of equipment, and 

also to detect precursors to the failure of components found in nuclear power plants, wind turbines, 

and aircrafts. 

In order to perform condition monitoring effectively, it is required to detect changes in time 

series at an early stage in order to predict future failures. A common method to detect changes is to 

monitor the average and variance of the time signals and to use control charts. This method often 

performs poorly because of the variety and complexity of the changes that appear in the signals. 

In order to overcome the disadvantages of this conventional technique, change detection 

techniques that make use of the Singular Spectral Transform (SST) and Autoregressive Integrated 

Moving Average (ARIMA) are considered. SST has been applied successfully to detect changes in 

weather patterns [1-3], and movement of a human body [4]. Comparison between ARIMA and 

Singular Spectrum Analysis (SSA) for forecasting purposes has been performed on economy and 

social data [5-6], and SSA showed higher performance. 

In this paper, in order to clarify and compare the characteristics of the change detection methods 

using SST and ARIMA applied to equipment diagnosis, these two techniques are applied to signals 

with different kinds of change points. 

The paper is organized as follows. Section 2 gives an overview of the SST and ARIMA methods, 

and the various signals used to evaluate them are described in section 3. A summary and discussion of 

the results is presented in section 4 before the conclusion. 
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2.  CHANGE-POINT DETECTION METHODS 

 

2.1  SST 
 

SST is a technique that applies principal component analysis to time series, and detects change in 

them through the variation of the principal components. 

Let               be a time series.                    
  is a part of    that is fixed and 

represents the normal state.                   
 
 is another part of    that is compared to    to 

evaluate whether a change occurred or not.    and    are history matrices that are created from    

and   : 

      

             

                 

    
                 

  

      

             

                 

    
                 

  

(1) 

 

where m and n are empirical parameters. 

The eigenvalue decomposition is applied to    and   : 

 

    
      

       
      

  (2) 

 

where   and   are matrices which columns are the eigenvectors of    and   . These 

eigenvectors are arranged in descending order of the corresponding eigenvalues: 

 

                             (3) 

 

The degree of change of    compared to    is quantified by the “SST score” z, defined as: 

 

        
     

 
 

   

 (4) 

 

where the parameter r is such that the sum of the r largest eigenvalues is greater than 70% of the 

sum of all eigenvalues. 

 

2.2  ARIMA 

 
First, the ARIMA model itself is explained, and then the change point detection method that 

makes use of the ARIMA model is described. 

 

2.2.1  ARIMA Model 
 

ARIMA is a model for time series first introduced by Box & Jenkins [7]. It is a generalization of 

the ARMA model, itself a combination of AR and MA models. 

 

a) AR model 
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The AR model represents the present value by a linear combination of the p past values. The p
th
 

order AR model is given by 

 

                      (5) 

 

where    is an error term. 

 

b) MA model 

The MA model represents the present value from the q past errors. The q
th
 order MA model is 

given by 

 

                           (6) 

 

c) ARMA model 

The ARMA model is a combination of the AR model and the MA model. The equation (7) is 

called the ARMA model of degree (p, q). 

 

                         

                             
(7) 

 

d) ARIMA model 

Since the ARMA model assumes stationary time series, it can not be applied to non-stationary 

time series. In order to achieve stationarity, the differences of the data points of a time series are 

calculated as follows. 

The first difference     is expressed as 

 

            (8) 

 

The d
th
 difference is expressed as 

 

                     (9) 

 

The ARMA model applied to the d
th
 difference time series is called the ARIMA model of degree 

(p,d,q): 

 

         
           

      

                                             
(10) 

 

2.2.2  ARIMA-CF 
 
The change point detection technique that makes use of the ARIMA model is called the 

ARIMA-CF (Change Finder). The degree of a change is quantified by the “ARIMA Score”. 

The ARIMA Score was first described in [8]. The procedure of ARIMA-CF is as follows. 

i) At time t, the ARIMA (p,d,q) model is created from the n points time 

series                       . p, d, and q are determined with the Akaike Information 

Criterion (AIC), and the coefficients of the ARIMA model are determined through the 

Least-Square method.  

ii) The residual                        the difference of the forecast by the ARIMA model 
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and the actual measurement. The average and variance of the residuals    of the time series X are 

computed. With the assumption that the residuals are normally distributed, the probability density 

distribution      of the residuals of the time series X is obtained. 

iii) From the residual     at time t, the probability of occurrence of    ,          is estimated. This 

probability is used to define the score    as 

 

                  (11) 

 

Although the score at time t is evaluated with (11), additional procedures are performed in order 

to reduce false detections. 

iv) The k
th
 moving average    is computed from the scores               : 

 

   
       

 
   

 
 (12) 

 

v) The score     is calculated by following the procedures i) to iii) on the n last moving averages 

              . The k'
th
 moving average of     is the ARIMA Score    : 

 

    
   

     
  

   

  
 (13) 

 

3. EVALUATION SETUP 
 

3.1  Evaluation signals 
 

Four types of synthetic signals (see Table 1) are considered to compare the SST and ARIMA-CF 

methods in the frame of equipment diagnosis. 

 
Table 1.  Signals for evaluation 

Type of signal Type of change Content of signal ID 

Periodic Frequency Sine wave 1 

  Sine wave with noise 2 

 Amplitude Sine wave 3 

Non Periodic Average Gaussian noise 4 

 

The periodic signals 1 to 3 are intended to represent change in vibration signals that are 

commonly used for the diagnosis of equipment. Periodic signals can be decomposed in two 

components, amplitude and frequency, that will each be affected depending on the abnormality. 

Nonetheless, depending on the type of abnormality, the change can be more easily detected with the 

amplitude or with the frequency. For this reason, evaluation in terms of detection of the change point 

is performed with SST and ARIMA-CF for these two components separately.  

The signal 4 (see Table 1) is intended to represent general signals that are non periodic such as 

trend data of vibration level, pressure, flow or other data obtained from online monitoring and 

acquired at a fixed interval. The main change to be detected in this kind of signals is a change in the 

mean value and the signal 4 was designed for such an evaluation. 

In addition, the signals 2 and 4, that contain gaussian noise, are used to evaluate the applicability 

of each method in the presence of noise. 
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3.2  Determination of the parameters of the methods 

 
3.2.1 Base Interval 

 
The base interval, that is used for calculating the scores, is different for SST and ARIMA-CF. In 

the case of SST, the base interval is the first n points of the time series, and it is shown by a red frame 

in figures of numerical results. 

In the case of ARIMA-CF, the base interval is constituted of the n' points just before the point to 

be evaluated. While the base interval is changing for each evaluation point, the parameters p, q, and d 

of the ARIMA model are calculated only once for the first n' points of the time series and used 

henceforth. 

 
3.2.2  SST 
 

It is necessary to determine the parameters m and n, the size of the matrices    and     
appropriately. The parameter m represents the dimension of the eigenvectors and should be greater 

than the length of one cycle of the considered time series but not too large as sensitivity decreases 

with larger values of m. In this evaluation, m=100 and n=300. 

 

3.2.3  ARIMA-CF 
 

Because ARIMA-CF consists of two steps of modeling, two sets of parameters have to be 

determined. These parameters are the number of data points for each modeling (n1, n2); the degree of 

the models, and the size of the window for the calculation of each moving average (T1, T2) . 

In this evaluation, the number of data points at each step is the same as for SST (n1=n2=300). The 

size of the window for each moving average is respectively T1=5 and T2=3. The degree of the model 

for the first step is determined through the AIC (Akaike Information Criterion) using the first n points 

of the time series. The degree of the model for the second step is fixed to (1, 0, 0) for all cases. 

 

4. NUMERICAL RESULT  
 
4.1  Change in frequency 
 

The SST and ARIMA-CF scores for signal 1 are represented in Fig. 1 and 2 respectively.  For 

signal 1, the frequency of the sine wave is multiplied by 1.6 at sample 1000 and then again by 1.5 at 

sample 2000. 

 

 
Fig. 1.  SST Score and signal 1   
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Fig. 2.  ARIMA-CF Score and signal 1  (p1,d1,q1)=(1,1,0) 

 

While both methods detect the two change points, there is a significant difference between the 

SST and the ARIMA-CF scores. The SST score remains high after the first change point (see Fig. 1) 

while the ARIMA-CF score is high only just after the change points (see Fig. 2). The reason is that, at 

a given instant, SST performs the evaluation by comparison with the first n samples while 

ARIMA-CF performs the evaluation by comparison with the n previous samples. From these results, 

it can be seen that the SST can detect an abnormality even after the change point has occurred. The 

principle of the ARIMA-CF method means that continuous data are necessary. On the contrary, the 

SST method can be used even on data acquired intermittently.  

 

4.2  Influence of noise 
 

The SST and ARIMA-CF scores for signal 2 are represented in Fig. 3 and 4 respectively.  For 

signal 2, the frequency of the sine wave, with Gaussian noise added, is multiplied by 1.75 both at 

samples 1000 and 2000.  

 

 
Fig. 3.  SST Score and signal 2  

 

 
Fig. 4.  ARIMA Score and signal 2    (p1,d1,q1)=(1,0,1) 

 

The SST score increases after the change points but does not remain high, as in the case of signal 

1, and large fluctuations are observed due to the presence of noise. 

 The change points are not detected with the ARIMA scores that always remains low.  
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4.3  Change in amplitude 
 

The SST and ARIMA-CF scores for signal 3 are represented in Fig. 5 and 6 respectively.  For 

signal 3, the amplitude of the sine wave is multiplied by 2 both at samples 1000 and 2000.  

 

 
Fig. 5.  SST Score and signal 3 

 

 
Fig.6  ARIMA Score and signal 3  (p1,d1,q1)=(1,1,0) 
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4.4  Change in trend 

 
The SST and ARIMA-CF scores for signal 4 are represented in Fig. 7 and 8 respectively. For 

signal 4, the mean of the Gaussian noise increases steadily from sample 1000. 
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Fig. 7.  SST Score and signal 4  

 
Fig. 8.  ARIMA Score and signal 4   (p1,d1,q1)=(1,0,1) 
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4.5  Summary of results 
 

The results of the evaluations are summarized in Table 2. The meaning of symbols in the table 

are as follows. 

◎ Change detection is possible even when a change point is not included in the range of 

evaluation. 

○ Change detection is possible when the change point is included in the range of evaluation. 
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× Change detection is not possible. 

 
Table 2.  Summary of evaluation results 

Type of time series Type of change Content of time series SST ARIMA-CF 

Periodic Frequency Sine wave ◎ ○ 

  Sine wave with noise △ ☓ 

 Amplitude Sine wave ○ ○ 

Non Periodic Average Gaussian noise ○ ☓ 
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frequency of a signal changes, SST can detect it even when the change point is not in the 

evaluated range of data. 

 ARIMA-CF has the characteristic of detecting a change point only just after the change 

point and thus can only be applied to continuous data.  

 Both methods have their change point detectability reduced by the presence of noise. 

Improved detectability is expected by applying a noise reduction processing before applying 

the methods. However, as the SST method already includes a noise reduction step, it is more 

robust in the presence of noise . 

 

 

5. CONCLUSION 
 
In the frame of equipment diagnosis, SST is especially suitable for detecting change in frequency. 

This method has a large range of application as it can be applied even in the case of data that were 

acquired intermittently. 

Structural damage to rotating machines (misalignement, unbalance, …) are difficult to detect 

through the change of amplitude of the vibration signal. It is expected that using the SST method will 

improve the detectability of such abnormalities at an early stage by making use of the feature of this 

method that is to easily detect change in frequency. 

The next step is to apply the SST method to experimental vibration data acquired from rotating 

machines, especially with structural defects, to verify the applicability of the SST method to detect 

abnormalities at an early stage.  
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Abstract 

This work investigates the application of the Singular Spectral Transform (SST) to change detection in rotating 

machines. The performance of a technique is quantitatively evaluated in the scenario of misalignment in a 

turbopump assembly.  

When comparing the RMS of vibration signals in the case of misalignment to the case of a properly lined 

pump, no significant difference is detected. On the other hand, a statistically significant change is present when 

using the SST Score for change detection. Structural abnormality in rotating machines is difficult to detect 

using the magnitude of vibration, but since the SST detects changes in the shape of the signal, it is an much 

more sensitive to changes related to abnormality. 

Key words : Change Detection, Structural System Abnormalities, Singular Spectral Transform (SST), Signal 

Processing, Condition Monitoring, Rotating Machine 

 

1. Introduction 

 

Abnormalities in rotating machines can be classified into two categories. Mechanical damage, such as failure of 

bearings or gears, and structural abnormality such as unbalance or misalignment. Measuring changes in the level of 

vibration is a conventional method for detecting mechanical damage. Unfortunately, structural abnormality is difficult 

to detect with conventional methods (Komura, H. et al., 2002). Thus, improved analysis methods are needed that are 

sensitive to changes associated with structural abnormality. 

In this study, the SST method is applied to vibration signals and its performance is evaluated in terms of 

sensitivity to changes associated with structural abnormality. SST is a technique that applies principal component 

analysis to time series, and computes the degree of change between the principal components of two time series. SST 

has been applied successfully to detect changes in weather patterns (Okayasu, et al., 2012, Itoh and Kurths, 2011, Itoh 

and Marwan, 2013), and movement of a human body (Nishida, 2014) 

This paper is organized as follows. The second section explains the principles of the SST method. In the third 

section, the experimental setup and parameters of the method are described. Before the conclusion, results are 

presented and discussed in the fourth section.  

 

2. Methodology 

2.1 Experimental setup 

 

For each experiment, offset misalignment is introduced on the shaft between the motor part and the pump part of a 
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horizontal turbo-pump. The technical specifications of the pump are given in Table1. 

To introduce the abnormality, a shim is inserted between the motor and its foundation. Offset is quantified by the 

thickness of the shim. The amount of offset for each experiment is given in Table2. 

 

Table 1 Pump technical specifications 

Pump Type Horizontal volute pump 

Power 1.5 kW 

Rotation Speed ≒3000 rpm 

Coupling Type Flanged rigid coupling 

 

Table 2 Amount of offset for each experiment 

State Amount of offset 

Normal 0.0 mm 

Misalignment 1 0.5 mm 

Misalignment 2 1.0 mm 

Misalignment 3 1.5 mm 

Misalignment 4 2.5 mm 

Misalignment 5 3.0 mm 

 

Measurements are performed simultaneously with 6 channels (two 3-axis vibration acceleration sensors), that are 

located on the motor and pump bearings respectively (see Figure 1). Data are acquired at the sampling rate of 20 kHz 

and each acquisition has a duration of 10 seconds. For each experiment, data are acquired intermittently 10 times. 

 

 
Fig 1 Location of the accelerometers 

 

2.2 SST 

2.2.1 Principles 

 

SST is a technique that applies principal component analysis to time series, and detects changes in them through 

the variation of the principal components (Moskvina and Zhigljavsky, 2003). 

Let               be a time series.                    
  is a part of    that is fixed and represents the 

normal state.                   
 
 is another part of    that is compared to    to evaluate whether a change 

occurred or not.    and    are history matrices that are created from    and   : 

      

             

                 

    
                 

  

      

             

                 

    
                 

  

(1) 

Accelerometer
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where m and n are empirical parameters. 

The eigenvalue decomposition is applied to    and   : 

 

    
      

       
      

  (2) 

 

where   and   are matrices which columns are the eigenvectors of    and   . These eigenvectors are 

arranged in descending order of the corresponding eigenvalues: 

 

                             (3) 

 

The degree of change of    compared to    is quantified by the “SST score” z, defined as: 

 

        
     

 

 

   

 (4) 

 

r is an empirical parameter that determines the number of largest principal components that are used for 

comparison. 

 

2.2.2 SST parameters 

 

In order to perform the calculations involved in the SST, it is necessary to set the parameters m and n in equation 

(1) as well as the parameter r in equation (4). m is the dimension of the principal components vectors and n is the 

number of data points used for computing the principal components. Because SST is a method that detects changes of 

state in the time series from the change of the principal components, it is necessary to choose a sufficiently large 

dimension for the principal components so that the characteristics of the time series are captured appropriately. If the 

dimension of the principal components vector m is relatively small, the high frequency components will dominate. If m 

is relatively large, the low frequency components will appear. Therefore the frequency domain should be determined 

from the characteristics of the acquired signals in order to choose an appropriate value of m. 

For this determination, a simple spectral analysis is first performed. Examples of the spectrum of vibration  

signals acquired for some of the experiments are shown in Fig 2. Each of these spectrums is the average of the 

spectrums obtained from 10 measurements. 

 
Fig 2 Average spectrum of the acceleration in the horizontal direction of the motor bearing. 
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Fig 2 shows that the main spectral components are under 1kHz in all cases. Moreover, the lowest main spectral 

component is 50Hz, which is the rotation frequency of the axis. As the same remarks can be done for the cases not 

shown in Fig 2 (other directions and location), the frequency domain can be set to 50～1000Hz.  

Since the frequency domain is limited to up to 1kHz and the sampling rate is 20kHz, the data can be downsampled 

to avoid that the size of the matrix during the computation of the SST becomes unnecessary large. The number of 

samples is divided by 10 so that the Nyquist frequency becomes equal to 1kHz. The value of m should be chosen so 

that the information down to 50Hz is included. The lower value of 33.3Hz is chosen to ensure that no information is 

lost. The sampling rate after downsampling is 2kHz and the frequency of 33.3Hz corresponds to a duration of 0.03 

seconds, which implies that the value of m is 60 samples (2000x0.03=60). 

n is the data length to be used once for the calculation of the principal components and n-m+1 corresponds to the 

number of samples used by the principal component analysis. A balance must be found as more general principal 

components are obtained with a larger number of samples, but the computational cost of the matrices is increased. In 

order to verify the influence of the value of n on the results, several values of n are used: 2, 3, and 4 times the value of 

m.  

r in equation (4) determines the number of principal components that are used when computing the degree of 

change compared to the reference state. The magnitude of the eigenvalues obtained by equation (2) represents the 

amount of information of the corresponding principal components. It is thus suitable to set a threshold on the 

magnitude of the eignevalues to determine the number of principal components to be used for the score calculation. 

The ratio    of the sum of a number of the largest eigenvalues over the sum of all the eigenvalues is defined as 

    
   

 
   

   
 
   

                         (5) 

 

with    the eigenvalue corresponding to the k-th principal component obtained from equation (2). r is determined 

as the smallest value of i such as    is larger than the threshold p=0.2, 0.4, or 0.6. 

 

2.2.3 SST Score computation 

 

As described in 2.2.1, SST is a method for calculating the degree of change of the principal components between 

the base interval and the target interval. Considering that even in stable conditions, acquired signals show significant 

variation, it is not sufficient to use a single interval in the normal state as the base interval. Therefore, the SST Score of 

a target interval is computed from the average of the scores calculated for several base intervals in normal state. 

Moreover, the same computation is performed for all six channels, that are measured simultaneously, and the average of 

these scores is the final SST Score of a given target interval. The base intervals are extracted from all acquisitions in 

normal state at a certain interval(10 x n). A diagram of the calculation process is shown in Fig 3. The notations used in 

this figure are defined as follows. 

Ti: i-th target interval (i=1,2,3...NT) 

Bj: j-th base interval (j=1,2,3....NB) 

   
 : SST score computed from Ti and Bj for channel c (c=1,2,…,6) 

  
 : SST score for channel c for the i-th target interval 

  : average SST score for i-th target interval (average of scores   
  to   

 ) 
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Fig 3 Computation of the SST score 

 

2.3 Other features 

 

In order to compare with the SST Score, two commonly used features in vibration diagnosis are computed: the 

RMS and the kurtosis. Generally, when structural abnormality is present, the RMS is said to increase while the kurtosis 

decreases (Jinyama 2009). For the reference data xi  (i=1,2,...N), the RMS and kurtosis are defined by 

      
 

 
   

 

 

   

 (6) 

 

          
          

   

   
    (7) 

with    the mean of xi and   its standard deviation. 

These features are computed in a similar manner than the SST Score. Computation is done for the target interval 

Ti for each channel before averaging on all channels (Zi). Unlike in the case of SST, the data used for computing these 

features are not downsampled. 

  

3. Experimental results 

3.1 Comparison of SST to other features 

 

The results of the calculation of the SST Score, the RMS of the acceleration and velocity and the kurtosis are 

shown in Fig 4. The RMS of the velocity is computed after integrating the acquired vibration acceleration. The data 

points in the graphs represent the average value of each feature, for each experiment and for all NT evaluations, and the 

error bars represent the standard deviation (±σ). 
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Fig 4 Comparison of the SST Score to the other features (SST parameters: m=60, n=180, p=0.4) 

 

Although the most commonly used features in vibration diagnosis are the RMS of the acceleration and velocity, 

that correspond to the magnitude of the vibrations, the expected tendency of an increase of the RMS along with the 

amount of misalignment was not observed in this study (see Fig 4). It was not possible to detect the abnormality with 

RMS. The stress exerted on the shaft and bearing should have increased along with the amount of misalignment, but as 

the structure doesn’t have gaps, and the coupling is of rigid type, there is not much influence on the vibration level. 

Due to the variations observed in the normal state, detection of a clear change of kurtosis when an abnormality is 

present is difficult. 

On the contrary, the SST Score is always higher when misalignment is present than in the normal state. The 

change due to an abnormality is large when the standard deviation in normal operation is considered. 

 

3.2  Evaluation of the influence of the SST parameters  

 

The value of m, which is the dimension of the principal components of the SST method, can be set according to 

the frequency range. However, there is no standard criterion for setting n, the length of the data used to compute the 

principal components, as well as r, the amount of principal components used to compute the SST Score. Therefore, in 

order to evaluate the effect of these parameters, several values are evaluated. The results for several values of n and r 

are shown in  Fig 5. The value of r is determined according to the value of p as described in section 2.2.2, and the 

larger the value of p is, the more principal components of lower rank are included in the calculation of the score.  

As can be seen from Fig 5, the score is higher when misalignment is present than when conditions are normal, 

regardless of the value of the parameters or the amount of offset. When considering the standard deviation in normal 

operation, it is clear that detection of abnormalities is possible. Moreover, the results are not affected significantly by 

the value of n that can be set as twice the value of m. 

On the contrary the value of p has a significant influence on the result, and the score is lower for larger values of p 

as equation (4) shows. However, the most important aspect is not the height of the score, but whether the score changes 

significantly in the abnormal state compared to its value and variation in normal state. In this case, it is possible to 

detect an abnormality for all three values of p. 

While the score tends to saturate for an amount of offset larger than 1.0 mm, it can be seen that the score has a 
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tendency to increase with the offset in the range 0～1.0 mm. This score is an effective sensitive indicator for the very 

small levels of misalignment. 

                   

      

   

      

   

      

   

 Fig 5 Comparison of the results depending on the parameters of the SST Score (m=60) 

 

4. Conclusion 

 

Structural abnormality in rotating machines is generally difficult to detect using the magnitude of vibration alone. 

In order to solve this problem, the SST method was used on experimental data from a misaligned pump, and it’s 

effectiveness was demonstrated. 

The conventional indicators in vibration diagnosis (vibration acceleration RMS, vibration velocity RMS and 

kurtosis) were not effective for detecting abnormalities. It was demonstrated that these same abnormalities can be 

detected with the SST Score method. As for the parameters used in the calculation of the SST Score, by appropriately 

determining the value of m depending on the frequency range, the influence on the results of the other parameters is 

small. The detection capability was not adversely affected even when changing the value of these parameters. 

The SST Score that was derived from the SST method and the calculation of a score, can be considered as a 

sensitive indicator for the detection of structural abnormality. In addition to microscopic misalignment, we hope to 

expand the application of this method to more data sets from other experimental systems that include different damage 

mechanisms. 
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